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Highlights
The acquisition of phosphorus by plants
is often mediated by soil microbes colo-
nizing the roots, particularly mycorrhizal
fungi.

Key molecular mechanisms involved in
the transport of phosphorus from the
soil to mycorrhizal fungi have been re-
vealed recently. However, the release of
phosphorus towards colonized roots is
still understudied, even if a recent report
highlighted the possible involvement of

+

Mycorrhizal fungi considerably improve plant nutrition and help them to cope
with changing environments. Particularly, these fungi express proteins to trans-
fer inorganic phosphate (Pi) from the soil to colonized roots through symbiotic in-
terfaces. Themechanisms involved in Pi transfer from fungal to plant cells are still
largely unknown. Here, we discuss the recent progress made on the description
of these mechanisms and we propose the most promising hypotheses and alter-
native mechanisms for this process. Specifically, we present a phylogenetic sur-
vey of candidate Pi transporters of mycorrhizal fungi that might ensure Pi unload
into the symbiotic interfaces. Gathering additional knowledge on mycorrhizal Pi

transport will improve the Pi-useefficiency in agroecological systems and will
guide towards addressing future research challenges.
fungal H :Pi transporters.

Based on a survey of fungal transport
proteins, others mechanisms possibly
ensuring phosphorus efflux in mycorrhi-
zas must coexist besides H+:Pi trans-
porters. These include the putative
involvement of Pi :Na

+, low-affinity inor-
ganic phosphate, and organic phos-
phate transporters.

Unravelling the fungal phosphorus
transportome will allow a better use of
plant–fungus symbioses for the improve-
ment of plant nutrition in cropping
systems.
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Phosphate Efflux in Mycorrhizal Roots: The Missing Step
The roots of most land plants fulfill an important part of their need for phosphorus (P) through the
association with soil fungi, called mycorrhizal symbiosis [1,2]. Fungal species belonging to the
Mucoromycota, subphylum Glomeromycotina, Ascomycota, and Basidiomycota phyla form dif-
ferent types of mycorrhizas [3]. Arbuscular mycorrhizal (AM) symbiosis (see Glossary), char-
acterized by the formation of fungal arbuscules and/or vesicles within plant cortical cells, is
formed by Glomeromycotina species. Other types of endomycorrhizas specific to Ericaceae
andOrchidaceae species and called ericoid and orchidmycorrhizas, respectively, are also de-
scribed [4,5]. Fungal species belonging to Ascomycota and Basidiomycota phyla can form both
endomycorrhizas and more often ectomycorrhizas. In ectomycorrhizal (ECM) symbiosis, the
fungus develops a sheath around short roots and a network of hyphae between plant cells,
called the Hartig net [6]. Despite the great morphological differences between AM, ECM, and
other types of mycorrhizas, the mycelium always differentiates in two pseudo-tissues:
extraradical hyphae exploring the soil to gather water and nutrients and intraradical hyphae
responsible for resource allocation to the plant. Whatever the type of mycorrhiza, there is no direct
contact between fungal and plant cortical cells, which are separated by a common apoplast, also
called the symbiotic interface. Therefore, water and nutrients transit through the plasma
membrane of the ‘donor’ cell before absorption by the ‘receiving’ cell. Carbon in the form of
sugars and/or lipids originating from the plant also transits by this interface through specialized
proteins and is acquired by intraradical hyphae [7–11]. The ability of mycorrhizal fungi to facilitate
the plant mineral acquisition depends on influx and efflux mechanisms in extraradical and
intraradical hyphae, respectively. In both AM and ECM symbioses, proteins involved in influx
transport have been well documented for water, macro-, and micronutrients (reviewed in
[12–14]), whereas those enabling efflux at the symbiotic interface remain largely unknown, partic-
ularly for P [1]. In this opinion article, we (i) report the recent progress made on the description of
fungal proteins involved in P delivery towards mycorrhizal roots, (ii) reveal that other efflux
mechanisms must coexist in mycorrhizal fungi, and (iii) propose potential fungal candidates that
might ensure this role.
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Glossary
Arbuscular mycorrhiza: symbiotic
association between roots of most land
plants and fungi belonging to the
Mucoromycota phylum,
Glomeromycotina subphylum.
Arbuscule: highly ramified fungal
structure developing within plant cortical
cells in arbuscular mycorrhizal
symbiosis.
Ectomycorrhiza: symbiotic
association between roots from trees
and shrubs and fungi belonging to the
Ascomycota and Basidiomycota phyla.
Ericoid mycorrhiza: symbiotic
association between roots from
Ericaceae plants and mycorrhizal fungi.
Extraradical hyphae: hyphae
exploring the soil in mycorrhizas to
gather water and nutrients.
Hartig net: fungal hyphae internally
colonizing roots between plant cortical
cells in ectomycorrhizal symbiosis.
Described for the first time by Robert
Hartig.
High-affinity Pi symporters: proteins
showing saturable kinetics and
mediating the transport of Pi available at
low concentrations (μM range) across
membranes. In yeast, two high-affinity Pi

transporters are known, Pho84 and
Pho89, which are both located at the
plasma membrane. Pho84 is a
symporter (see the definition below)
cotransporting protons and Pi, and
Pho89 is a symporter cotransporting
sodium ions and Pi.
Intraradical hyphae: hyphae internally
colonizing plant roots in mycorrhizas.
Low-affinity Pi transporters: proteins
showing linear kinetics and mediating
the transport of Pi available at high
concentrations (mM range) across
membranes. In yeast, three low-affinity
Pi transporters are known; two of them
(Pho87 and Pho90) are symporters (see
the definition below) cotransporting Na+

and Pi and are located at the plasma-
membrane. The third one (Pho91) is lo-
cated at the tonoplast and is supposed
to export Pi from the vacuole towards
the cytosol.
Mycelium: vegetative part of a fungus,
consisting of a network of branching and
threadlike hyphae, often underground.
Orchid mycorrhiza: symbiotic
association between roots from
Orchidaceae plants and mycorrhizal
fungi.
Sheath: layers of hyphae
encompassing tree roots in
ectomycorrhizas.
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High-Affinity Transporters Mediate Inorganic Phosphate Efflux in
Ectomycorrhizas
The simplest hypothesis to explain the fungal P delivery at the symbiotic interface is the release of
free orthophosphate ions (Pi) through phosphate transporters (PT). Fungal P transport has been
widely studied in baker’s yeast (Saccharomyces cerevisiae), in which two high-affinity Pi

symporters have been characterized, one coupled with H+ (Pho84) [15] and one with Na+

(Pho89) [16]. Interestingly, alignment of proteins retrieved from publicly available mycorrhizal spe-
cies using the sequences of yeast Pho84 and Pho89 revealed the occurrence of two distinct
groups: H+:Pi transporters clustering with Pho84, and Pi:Na

+ transporters clustering with Pho89
[17]. A pioneering study identified a Pho84 ortholog in the AM fungus Glomus versiforme, GvPT,
whose heterologous expression in yeast demonstrated its function as a high-affinity H+:Pi trans-
porter [18]. Ever since, further genes putatively encoding PT have been discovered in other AM
species,GiPT in Rhizophagus irregularis,GmosPT inGlomus mosseae, andGigmPT inGigaspora
margarita [19,20]. Interestingly, mRNA and/or proteins ofGmosPT andGimPTwere found in plant
cells containing arbuscules, suggesting their possible involvement in Pi efflux [19,20]. Orthologs
were also functionally characterized in some ECM species, including Hebeloma cylindrosporum
(HcPT1.1, HcPT1.2, and HcPT2), Boletus edulis (BePT), Rhizopogon luteolus (RlPT), and
Leucocortinarius bulbiger (LbPT) [21–25]. HcPT1.1 and HcPT2 were both localized in the Hartig
net hyphae of ectomycorrhizas [22,26], and the overexpression of HcPT2 increased the export
of P in the central cylinder of colonized maritime pine roots and the amounts of P accumulated in
shoots, indicating that HcPT2 might mediate Pi efflux at the symbiotic interface [26]. HcPT2 of
the ECM fungus H. cylindrosporum is the only candidate involved in fungal Pi efflux within mycor-
rhizas investigated so far.

Efflux of Inorganic Phosphate through H+:Pi Symporters Is Tightly Regulated by
Undescribed Mechanisms
Determining whether an efflux of Pi is possible through fungal H+:Pi transporters from a thermo-
dynamic point of view is a key question that was addressed recently in AM symbiosis [27,28]. In-
deed, computational modeling was used to simulate in silico the conditions required for Pi

exchange through fungal and plant H+:Pi transporters located at the symbiotic interface of AM
roots. Briefly, the authors modelized a network based on the activity of fungal and plant mem-
brane ATPases that release protons into the interface. This determines the pH value at the sym-
biotic interface and the activity of H+:Pi transporters from both partners. Based on this model, Pi

concentrations in both fungal and plant cytosols are the only factors determining Pi movements
through the symbiotic interface. Finding and characterizing the molecular players driving this
transport through the symbiotic interface is challenging since only a few fungal (reviewed here)
and plant members [29–31] have been identified so far. Further studies are indeed needed to
evaluate the efflux and influx capacities of both fungal and plant H+:Pi transport systems
expressed at the symbiotic interface and to validate in vivo the computational models developed
by Schott et al. [27] and Dreyer et al. [28].

Alternatively, Pi efflux might also result from plant-inducible modifications of fungal H+:Pi trans-
porters that modify their expression and/or activity. This hypothesis is supported by the measure
of differential efflux of 32P in the ECM fungus H. cylindrosporum overexpressing HcPT2 after in-
cubation into a solution mimicking the symbiotic interface, with or without the plant [26]. Two
days after incubation, the mycelia overexpressing HcPT2 released less than 2% of 32P when in-
cubated without the plant, but significantly more (17%) than the control strains (10.5%) in pres-
ence of the roots. These data confirm that P efflux from fungal cells remains low without the
plant, and suggest that the host plant somehow controls the HcPT2-dependent efflux of Pi. It
is worth hypothesizing that an unknown signal originating from the plant might affect the
2 Trends in Plant Science, Month 2019, Vol. xx, No. xx



Symbiotic interface: (synonymous,
apoplast) the cellular space between
plant and fungal membranes, delimiting
the site of reciprocal nutrient exchanges
between partners.
Symporters: proteins mediating the
transport of different types of molecules
against their concentration gradient
using the transport of another molecule
(protons or sodium ions) along their
concentration gradient, previously
created by the cell (i.e., ATPase activity
extruding protons outside the cytosol).
Transportome: repertoire of genes
encoding proteins responsible for the
transport of molecules across cellular
membranes.
Vesicles: fungal storage structure
developing within plant cortical cells in
arbuscular mycorrhizal symbiosis.
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expression and/or activity of HcPT2. Interestingly, it was recently demonstrated that effector-like
proteins from poplar were induced upon ECM symbiosis and even enter into Laccaria bicolor hy-
phae [32]. We can hypothesize that these plant effectors might control nutrient delivery from the
fungus through the regulation of transporter expression and/or activity. Fungal effectors were also
reported in multiple sequenced mycorrhizal fungi but only a couple of them were described as
plant defense modulators, allowing the fungal colonization [33–36]. Consequently, we can also
hypothesize that fungal effectors might modulate the activity of plant carbon transporters, regu-
lating the carbon delivery from the host to fungal cells. The investigation of such mutual regula-
tions will certainly provide a deeper understanding of the P transport from fungi to plants and
will help to fine-tune and improve the existing in silico models.

The Intriguing Case of High-Affinity Pi:Na
+ Symporters

Based on recent data reporting the role of HcPT2 in ECM symbiosis [26], it is tempting to hypoth-
esize that H+:Pi, and particularly PT2-like transporters, could be the main proteins unloading Pi

into the symbiotic interface. Here, we show that all studied mycorrhizal fungi, except Sebacinales,
harbor at least one ortholog of H+:Pi PT1-like transporter, whereasmost Ascomycota (truffles and
parented species) and Glomeromycotina species do not have a PT2-like member (Figure 1). This
indicates that alternative mechanisms for Pi efflux at the symbiotic interface must coexist in mycor-
rhizal fungi. The only Basidiomycota lacking PT2-likemembers isAmanitamuscaria, but its genome
harbors a high number of PT1-like genes compared with other species (Figure 1). This suggests
that one PT1-like protein or other types of transporters might ensure Pi efflux into the interface.

In all other fungi, the lack of PT2-like transporter is correlated with the presence of at least one
protein clustering with Pho89 that codes for a high-affinity Pi:Na

+ transporter. Moreover, most
Basidiomycota harboring a PT2-like ortholog do not possess any Pi:Na

+ transporter protein.
One can argue that the presence and conservation of this protein might be related to the lifestyle
of these fungi, including R. irregularis (AM) and Tuber species (ECM) that can be found in neutral
or alkaline pH soils, respectively. In these conditions, the lack of protons in the soil solution would
prevent the energization of Pi uptake by the fungal cells through H+:Pi transporters. The acquisi-
tion of Pi would be only possible through Pi:Na

+ transporters. Along the same line, Pi:Na
+ trans-

porters might also mediate Pi efflux at the interface independently of proton gradients occurring
between the neutral cytosol and the acidic apoplastic space. For example, it was described
that some Ascomycota species can better tolerate high external NaCl concentrations than Basid-
iomycota, indicating a greater disposition of these fungi to mobilize and utilize sodium ions [37].
However, other Basidiomycota species can also efficiently tolerate, and help host plants to toler-
ate, salt stress conditions(e.g., through the expression of Na+:H+ transporters) [38,39]. Conse-
quently, the presence or absence of fungal Pi:Na

+ transporters is certainly not the only feature
for salt stress tolerance in mycorrhizal plants and various mechanisms must coexist (reviewed
in [40]). Investigating the role of fungal Pi:Na

+ transporters in mycorrhizas is one logical next
step, since we do not have any data yet on their transport activity, in situ localization, and symbi-
otic function.

Low-Affinity Transporters Could Also Mediate Inorganic Phosphate Efflux in
Mycorrhiza
So far, the most studied mechanisms for Pi efflux in mycorrhizal symbiosis have focused on H+:Pi

transporters. In yeast, Pi can also be transported through three low-affinity transporters, de-
scribed as Na+/dicarboxylate/sulfate/Pi transporter in databases (Pho87, Pho90, Pho91)[41].
When Pho84 and Pho89 are either not expressed in yeast or degraded at high Pi, Pho87 and
Pho90 are located at the plasma membrane and ensure Pi acquisition [41–43]. Pho91 is localized
at the vacuolar membrane of yeast cells and ensures the export of Pi towards the cytosol [44].
Trends in Plant Science, Month 2019, Vol. xx, No. xx 3
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Figure1. Number of Predicted Phosphorus Transport Proteins in Publicly Available Sequenced Mycorrhiza
Fungi. Partial 18S ribosomal RNA gene sequences were retrieved from NCBI database and aligned using multip
sequence comparison by log-expectation alignment (MUSCLE). The phylogenetic tree was constructed in MEGA7 [55
using the Maximum Likelihood method based on the JTT matrix-based model [56]. The bootstrap consensus tree inferre
from 500 replicates is taken to represent the evolutionary history of the taxa analyzed. Predicted phosphorus transpo
proteins were retrieved from the Mycocosm database (https://genome.jgi.doe.gov/programs/fungi/index.jsf) and used t
construct two phylogenetic trees (data not shown) with the same method as for species evolution, but using 100 replicate
for bootstrap. The first tree was generated with predicted proteins retrieved with HcPT1.1 (PT1 [46]) or HcPT2 (PT2 [46
from Hebeloma cylindrosporum as query in BlastP. The retrieved proteins clustered into four distinct groups: high-affinit
H+:Pi transporters orthologous to HcPT1 (PT1) or HcPT2 (PT2), high-affinity Pi:Na+ transporters orthologous to Scpho8
(Pho89) from Saccharomyces cerevisiae, and P-diester transporters orthologous to ScGit1p (Git1p) from S. cerevisiae. Th
second tree was generated with predicted proteins retrieved with ScPho87, ScPho90, and ScPho91 proteins, the low
affinity Pi transporters from S. cerevisiae. The predicted proteins clustered either with ScPho87 (Pho87) or wit
ScPho91 (Pho91). The fungal genera used to construct the tree were, by alphabetic order: Amanita (A. muscaria [57]
Cenococcum (C. geophilum [58]), Choiromyces (C. venosus [59]), Hebeloma (H. cylindrosporum [57]), Laccaria (L

(Figure legend continued at the bottom of the next page
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Image of Figure1
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Outstanding Questions
Are there other alternative mechanisms
for fungal inorganic phosphate delivery
that are still undescribed?

Is organic phosphate an alternative
phosphorus source in mycorrhizas?

What are the plant transporters involved
in phosphorus acquisition originating
from the fungus in ectomycorrhizas,
ericoid mycorrhizas, and orchid
mycorrhizas?

What are the plant signals, if any, trig-
gering the release of phosphorus into
the symbiotic interface?

What are the molecular players in-
volved in the formation, stabilization,
and transport of polyphosphates in
mycorrhizal fungi?

Is the release of phosphorus from fun-
gal cells into the symbiotic interface de-
pendent of carbon supply from the
plant cortical cells? Reciprocally, is the
release of carbon from plant cortical
cells into the interface dependent on
phosphorus supply from the fungal
cells?
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These three proteins are characterized by an SPX domain, which is a 180-residue length domain
that interacts with cytosolic 5-inositol-P7,the level of which reflects yeast P status [45,46]. In my-
corrhizal fungi, only one putative protein corresponding to yeast Pho87/Pho90/Pho91 can be
found, except in Pisolithus tinctorius and Paxillus involutus, which have two orthologs. Interest-
ingly, the identified protein clusters either with Pho91 in Basisdiomycota species or with Pho87
in Ascomycota and Glomeromycotina fungi (Figure 1). There is no data yet on the regulation, lo-
calization, and function of the corresponding proteins in mycorrhizal fungi. Although their role at
the vacuolar membrane to release P in the cytosol would make sense based on their yeast
orthologs, we cannot exclude that these proteins could be addressed to the plasma membrane
and participate in Pi efflux into the symbiotic interface [26,47,48].

Organic Phosphate, an Alternative Phosphorus Source in Mycorrhizas?
We assumed for decades that the form of P released to the symbiotic interface is Pi. However,
most mycorrhizal species also harbor at least one ortholog of the yeast organic P transporter,
ScGit1p (Figure 1). In yeast, this protein is upregulated at low P and is able to import several
phospho-diesters, which are by order of preference: glycerophosphoinositol (GroPIns) ≫
glycerophosphoserine ≫ glycerol-3-phosphate ≫ glycerophosphoethanolamine ≫
glycerophosphocholine [49]. A release of GroPIns has been measured in culture media only
when yeasts were grown in presence of inositol [49]. The production of external GroPIns is in-
creased by addition of glucose, along with GroPIns 4-phosphate and GroPIns 4,5-bisphosphate
[50]. In addition, the production of GroPIns is due to the deacylation of phosphatidylinositol, a
membrane phospholipid, suggesting that the turn-over of fungal membrane phospholipids
might represent a pool of organic P. Hence, if phospho-diester compounds are released at the
symbiotic interface of mycorrhizas, we hypothesize that these compounds might be an important
P source for the host due to high concentrations in glucose originating from plant cells. However,
none of these mechanisms have been identified thus far.

Concluding Remarks and Future Perspectives
Although the improvement of plant P nutrition by mycorrhizal fungi was described for the first time
more than 50 years ago [51,52], critical steps in the transport of P from the soil to colonized roots
are still missing. Specifically, only a handful of candidate proteins possibly involved in the release
of P from fungal cells into the symbiotic interface have been reported so far in both AM and ECM
fungi [53]. With our present survey of fungal P transporters putatively involved in this crucial step,
we have proposed a hypothetical model for P efflux into the symbiotic interface, regrouping all
identified fungal candidate proteins (Figure 2). This model clearly highlights differences between
fungi forming ectomycorrhizas (Ascomycota and Basidiomycota), arbuscular mycorrhizas, eri-
coid mycorrhizas, and orchid mycorrhizas, and suggests that P efflux into the symbiotic interface
is more complex than originally thought (see Outstanding Questions). However, validating the
symbiotic role of these proteins is still challenging since molecular tools and transformable spe-
cies are still lacking for mycorrhizal fungi. Thus, efforts in this direction are still needed to describe
and unravel the mycorrhizal P transportome and to improve the use of plant–fungus symbioses
in natural and agroecosystems [54].
amethystina, L. bicolor [57]), Meliniomyces (M. variabilis, M. bicolor [60]), Morchella (M. importuna [59]), Oidiodendron (O.
maius [57]), Paxillus (P. involutus, P. rubicundulus [57]), Piloderma (P. croceum [57]), Piriformospora (P. indica [61]),
Pisolithus (P. microcarpus, P. tinctorius [57]), Rhizophagus (R. irregularis [62]), Rhizopogon (R. vesiculosus, R. vinicolor
[63]), Rhizoscyphus (R. ericae [60]), Saccharomyces (S. cerevisiae [64]), Schizosaccharomyces (S. pombe [65,66]),
Scleroderma (S. citrinum [57]), Sebacina (S. vermifera [57]), Suillus (S. brevipes [38], S. luteus [57]), Terfezia (T. boudieri
[59]), Tuber (T. aestivum [59], T. magnatum [59], T. melanosporum [67], T. borchii [59]), and Tulasnella (T. calospora [57]).
The symbiotic behavior was non-mycorrhizal (NM), endophytic (E), or ectomycorrhiza (ECM), orchid (O), ericoid (ER) or
arbuscular (AM) mycorrhiza forming.
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Figure2. Hypothetical Model of Phosphorus Efflux from Fungal Cells to the Symbiotic Interface in Different Types of Mycorrhizas. Based on our survey of
putative transport proteins in mycorrhizal fungi (Figure 1), we propose that the transport of phosphorus from the cytosol of intraradical hyphae to the symbiotic interface
might be mediated by PT1-like (A–E) and PT2-like (A,D,E) high-affinity (H-affinity) H+:Pi transporters; Pho87-like (B–D) or Pho91-like (A,E) low-affinity (L-affinity) H+:Pi

transporters; Pho89-like high-affinity Pi:Na
+ transporters (B–E); or Git1p-like organic phosphate (Po) transporters (A,B,D,E). (A) Ectomycorrhizal symbiosis formed by

Basidiomycota species, (B) ectomycorrhizal symbiosis formed by Ascomycota species, (C) arbuscular mycorrhizal symbiosis, (D) ericoid mycorrhizal symbiosis, and (E)
orchid mycorrhizal symbiosis.
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