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SHORT COMMUNICATION

Cesium could be used as a proxy for potassium in mycorrhizal Medicago truncatula
Arjun Kafle and Kevin Garcia

Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA

ABSTRACT
Arbuscular mycorrhizal (AM) fungi interact with the roots of most land plants and help them to acquire 
various mineral resources from the soil, including potassium (K+). However, tracking K+ movement in AM 
symbiosis remains challenging. Recently, we reported that rubidium can be used as a proxy for K+ in 
mycorrhizal Medicago truncatula. In the present work, we investigated the possibility of using cesium (Cs+) 
as another proxy for K+ in AM symbiosis. Plants were placed in growing systems that include a separate 
compartment only accessible to the AM fungus Rhizophagus irregularis isolate 09 and in which various 
amounts of cesium chloride (0 mM, 0.5 mM, 1.5 mM, or 3.75 mM) were supplied. Plants were watered with 
sufficient K+ or K+-free nutrient solutions, and shoot and root biomass, fungal colonization, and K+ and Cs+ 

concentrations were recorded seven weeks after inoculation. Our results indicate that Cs+ accumulated in 
plant tissues only when K+ was present in the nutrient solution and when the highest concentration of Cs+ 

was used in the fungal compartment. Consequently, we conclude that Cs+ could be used as a proxy for K+ 

in AM symbiosis, but with serious limitations.
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Potassium (K+) is a macronutrient required by all living organ-
isms. In plants, K+ represents 2 to 10% of the dry biomass, and the 
optimum cytoplasmic K+ concentration for enzymatic activities is 
around 100–200 mM.1 Maintaining an optimum K+ concentra-
tion in plant cells is thus essential for the efficiency of several 
physiological processes, including plasma membrane polarization, 
stomatal aperture regulation, the acquisition of other nutrients, 
and ultimately, plant growth.2–4 Although K+ ions are typically 
abundant in soils, only two fractions are immediately available to 
plants: K+ in water solution and K+ in an exchangeable form. 
Together, these two fractions only represent 2.2% of the total soil 
K+.5 Thus, depending on the soil type, the concentration of plant- 
available K+ can range from 0.1 to 1 mM and often leads to the 
development of K+ depletion zones around plant roots.6,7 

Consequently, plants have developed efficient strategies to 
improve soil K+ uptake, including the expression of high-affinity 
transport proteins and the establishment of beneficial associations 
with microbes, such as arbuscular mycorrhizal (AM) fungi.8

Although multiple studies reported that plants colonized by 
AM fungi accumulate more K+ than non-colonized ones,9–14 

tracking K+ transport from the fungus to the roots remained 
challenging since K+ isotopes have a short half-life or are expen-
sive. Recently, we demonstrated that rubidium (Rb+), a classical 
proxy for K+, can be used to track K+ movement in mycorrhizal 
associations.15,16 In the present study, we report that cesium (Cs+) 
could be used as another proxy for evaluating K+ transport in the 
model legume plant Medicago truncatula colonized by the AM 
fungus Rhizophagus irregularis isolate 09, but with serious 
limitations.

Custom-made two-compartment systems containing one root 
compartment (RC) and one fungal compartment (FC) were used, 
as described previously.15,16 Two 52-micron meshes were placed 

between the compartments, allowing the fungal hyphae to colo-
nize the FC from the RC, but not the roots. Two-week-old 
M. truncatula (A17 accession) seedlings were transferred into 
each RC filled with pre-washed Turface® and inoculated or not 
with 400 fungal spores along with some colonized root segments of 
root organ cultures. Plant RCs were watered with either K+- 
deprived (-K, 0 mM) or K+-supplemented (+K, 3.25 mM) Long 
Ashton solutions. The FCs were provided with 20 ml of 1/10 
strength of the corresponding nutrient solution once a week 
along with milli-Q water between weekly nutrient solution addi-
tions. Ten days before harvest, FCs were provided with 20 ml of 
CsCl at various concentrations (0 mM, 0.5 mM, 1.5 mM, or 
3.75 mM) every 2 days, while the RCs were still watered with the 
-K or +K solutions until harvest at 7 weeks. Around 0.2 ppb of Cs+ 

was detected in the Turface®, which is far less than what was added 
in the FCs and detected in plant tissues (see below).

Shoot and root tissues were collected and oven-dried after 
taking a subsample of fresh roots to check the AM colonization 
(Figure 1). The shoot and root dry weights of mycorrhizal 
plants (AM) growing in +K condition were significantly higher 
than non-mycorrhizal (NM) plants or AM plants in -K condi-
tion (Figure 1a,b). Under K+-deprived conditions, no signifi-
cant differences in shoot dry weights were noted between NM 
and AM plants (Figure 1a). However, root dry weights of AM 
plants at -K were significantly higher than NM plants growing 
in the same condition (Figure 1b). We also recorded that an 
average of around 30–40% of M. truncatula roots were colo-
nized by the AM fungus, without any significant differences 
within each treatment (Figure 1c). We also observed that the 
amount of Cs+ supplied in the FCs did not affect plant biomass 
and root colonization in any K+ availability. Shoot K+ and Cs+ 

concentrations were also quantified using ICP-OES or ICP- 
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Figure 1. Biomass and root colonization of Medicago truncatula plants inoculated by Rhizophagus irregularis isolate 09 under potassium-deprived and -sufficient conditions, and 
with 0 mM, 0.5 mM, 1.5 mM, or 3.75 mM of cesium chloride added to the fungal compartment. Shoot (a) and root (b) dry weights were determined in seven-week-old 
M. truncatula plants inoculated (AM) or not (NM) by the AM fungus R. irregularis isolate 09 in deprived (-K, 0 mM) or sufficient (+K, 3.75 mM) K+ conditions. (c) The rate of fungal 
colonization was determined on M.truncatula roots grown under -K or +K conditions after seven weeks of co-culture using the grid line intersection method. In FCs, 0 mM, 0.5 mM, 
1.5 mM, or 3.75 mM of CsCl was added during each of the four watering sessions ([Cs+]) ten days before harvest. Different letters indicate significant differences among all possible 
combinations of the treatments according to ANOVA followed by LSD post hoc tests (P < 0.05), n = 5–6.
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MS, respectively, at the Environmental and Agricultural 
Testing Services (EATS) at North Carolina State University 
(Figure 2). AM plants displayed significantly greater shoot K+ 

concentration than NM plants only when K+ was provided in 
the watering solution (Figure 2a). This observation was not 
made in the absence of K+ supply, indicating that the fungus 
had a positive impact on plant K+ nutrition, as already reported 
in other studies.11,12,14,16 Concerning shoot Cs+ concentration, 
no difference was found between all AM and NM plants in K+- 
deprived condition (Figure 2b). At +K, significantly higher 
shoot Cs+ concentration was detected only in AM plants 
when 3.75 mM of CsCl was added to the FCs (Figure 2b). 
Indeed, we did not observe any difference in shoot Cs+ con-
centration between AM and NM plants when the FCs were 
provided with less than 3.75 mM of CsCl (Figure 2b).

These data revealed that Cs+ could be used as a proxy to 
track K+ movements in AM M. truncatula, but with less 
efficacy than Rb+. Indeed, even if more Cs+ was detected in 
the shoot of AM plants compared to NM ones, this differ-
ence was spotted only at the highest level of CsCl provided 
to the fungus and at high K+. Using a similar setup, we 
recently showed that a lower Rb+ supply (1.5 mM) can be 
used to track K+ in AM M. truncatula plants whatever the 
external K+ concentration.16 Additionally, the shoot Cs+ 

concentrations found here (around 0.1 μg/g of dry weight) 
were 200 times lower than the Rb+ concentrations we 
reported previously (around 20 μg/g of dry weight), making 
the detection of Cs+ more difficult than Rb+ in plant tis-
sues. This lower detectable concentration can be due to the 
larger molecular weight and ionic radius of Cs+ ions com-
pared to K+ and Rb+ ions, which may affect its transport 
upon AM symbiosis.17 Indeed, although some reports have 
demonstrated that AM fungi can transfer Cs+ from the soil 
to colonized plants,18–20 others reported the absence of Cs+ 

transport in mycorrhizal plants.21 Additionally, some 
authors mentioned that exposure to high Cs+ concentra-
tions could inhibit the AM colonization in M. truncatula, 
although we did not find such reduction here.22 They also 
reported that Cs+ transport to the host plant was not con-
sistent and could depend on the experimental factors such 
as plant and fungal species, soil types, as well as external K+ 

and Cs+ concentrations.22 It is also worth noting that Cs+ is 
a classical blocker for K+ channels and could even inhibit 
plant growth at high concentrations.23–25 We did not 
observe any biomass reduction in our experiment, probably 
due to the short exposure to Cs+ (10 days) and because the 
plants were not in direct contact with Cs+ ions. Finally, 
some reports described that AM fungi could accumulated 
radioactive Cs+ in their tissues, limiting its transport to 
host plants.19 Therefore, it is possible that most Cs+ we 
added in the FCs were stored in fungal hyphae and not 
transferred to M. truncatula, except when the highest level 
of Cs+ (3.75 mM) was supplied.

To conclude, we propose that Cs+ could be used as a proxy 
to track K+ movements in comparative experiments between 
AM and NM plants, but serious limitations come with this 
approach, including the very low detection of Cs+ ions in plant 
tissues, the impossibility to evaluate the absolute transport of 
K+, and the need to use higher amounts of Cs+ than Rb+. 
Consequently, Rb+ should be preferred over Cs+ as a proxy 
for K+ in mycorrhizal symbioses.
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Figure 2. Shoot potassium and cesium concentrations in Medicago truncatula 
inoculated by Rhizophagus irregularis isolate 09 under potassium-deprived and - 
sufficient conditions and with 0 mM, 0.5 mM, 1.5 or 3.75 mM of cesium chloride 
added to the fungal compartment. Potassium (K, a) and cesium (Cs, D) concen-
trations were determined by ICP-OES or ICP-MS in the shoots of seven-week-old 
M. truncatula plants inoculated (AM) or not (NM) by the AM fungus R. irregularis 
isolate 09 in deprived (-K, 0 mM) or sufficient (+K, 3.75 mM) K+ conditions. In FCs, 
0 mM, 0.5 mM, 1.5 mM, or 3.75 mM of CsCl was added during each of the four 
watering sessions ([Cs+]) ten days before harvest. Different letters indicate sig-
nificant differences among all possible combinations of the treatments according 
to ANOVA followed by LSD post hoc tests (P < 0.05), n = 5–6.
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